

Leibniz Universität Hannover Institut für Umformtechnik und Umformmaschinen

IFUM

Untersuchung zur kontrollierten Wärmebehandlung von Stahlschmiedebauteilen aus der Schmiedewärme

Prof. Dr.-Ing. B.-A. Behrens, Dipl.-Ing. M. Kazhai, Dipl.-Wirtsch.-Ing. A. Huskic

Garbsen, 17.03.2015

© Leibniz Universität Hannover, IFUM, Prof. Dr.-Ing. B.-A. Behrens

Gliederung

1. Vorstellung IFUM

2. Einleitung

3. Experimentelle Untersuchungen

4. Numerische Untersuchungen

Gliederung

1. Vorstellung IFUM

2. Einleitung

3. Experimentelle Untersuchungen

4. Numerische Untersuchungen

Universität Hannover

1. Das produktionstechnische Zentrum Hannover

Das PZH vereint

- die sieben produktionstechnischen Institute des Maschinenbaus \geq
- die TEWISS GmbH \geq
- Unternehmen der Produktionstechnik \geq

1. Das IFUM

Prof. Dr.-Ing. B.-A. Behrens

1. IFUM-Struktur

Prof. Dr.-Ing. B.-A. Behrens

Oberingenieur: Dr.-Ing. habil. A. Bouguecha

Dipl.-Ing. M. Vucetic

Numerische Simulation

M. Sc. I. Peshekhodov

Dipl.-Ing. C. Bonk

1. Kompetenz-Teams

Prof. Dr.-Ing. B.-A. Behrens

Oberingenieur: Dr.-Ing. habil. A. Bouguecha

IFUIT

1. Schwerpunkte

Blechumformung

- Verfahrensentwicklung und Prozessführung
- Qualitätssicherung
- Tribologie
- Leichtbau
- Mechanisches Fügen

Massivumformung

Umformmaschinen

- Tribologie
- Pulvermetallurgie
- Leichtmetallumformung
- Sonderverfahren
- Prozessüberwachung
- Elektromechanische Antriebssysteme
- **Regelungs- und Steuerungstechnik**
- Messtechnik
- Maschinensimulation und -diagnose
- Prozessanalyse: Scherschneiden, Prägen, Richten

Materialcharakterisierung und Simulation

- Materialcharakterisierung
- Werkstoff- und Reibmodelle
- Gefügeumwandlung
- Simulationsgestützte Prozessauslegung
- **Biomedizintechnik**

Gliederung

1. Vorstellung IFUM

2. Einleitung

3. Experimentelle Untersuchungen

4. Numerische Untersuchungen

2. Motivation

Prozesskette

© Leibniz Universität Hannover, IFUM, Prof. Dr.-Ing. B.-A. Behrens

IFUT

2. Projektstruktur

	AFP- / HDB-Stahl		Einsatzstahl	
TP 1	38MnVS6 / HDB		18CrNiMo7-6	İEHK
TP 2	Warmmassiv- umformung		Warmmassiv- umformung	IFUM
TP 5/6	Geregelte Abkühlung/ Bainitisieren		Geregelte Abkühlung/ Bainitisieren	IWT Verfahrenstechnik
TP 3/4	Kaltkalibrieren /Lauwarm- umformen	Heiß- /Kalt- zerspanung	Heiß- /Kalt- zerspanung	Universität E Luttgart IWT
TP 2			Einsatzhärten	IFUM IWT Werkstofftechnik

IFUM

2. Demonstratorbauteile

2. Problemstellung und Zielsetzung des IFUM

Stand Projektbeginn

Kommerzielle FE-Systeme sind noch nicht oder nur unzureichend in der Lage Gefügeumwandlungen und Eigenspannungsentwicklungen realitätsnah abzubilden

- Durchführung von Stoffflusssimulationen größtenteils unter Vernachlässigung von Phasenübergängen, Korngrößenevolution und Verzug
- Lokale Eigenschaften geschmiedeter Bauteile werden nicht mit erforderlicher Genauigkeit berechnet

Zielsetzung

Lückenlose numerische Abbildung der gesamten Schmiedeprozesskette unter Berücksichtigung der Gefügeevolution

Gliederung

1. Vorstellung IFUM

2. Einleitung

3. Experimentelle Untersuchungen

4. Numerische Untersuchungen

IFUM

3. Experimentelle Versuchseinrichtung

Vollautomatisierte Schmiedezelle

Leibniz Hannover

0;

100

Universität

3. Versuchsaufbau und -parameter für das Warmfließpressen

© Leibniz Universität Hannover, IFUM, Prof. Dr.-Ing. B.-A. Behrens

IFUIT

IFUM

3. Automatisierter Warmfließpressprozess

Video zum automatisierten Schmieden einer abgesetzten Welle

© Leibniz Universität Hannover, IFUM, Prof. Dr.-Ing. B.-A. Behrens

Leibniz 2 Hannover

0;

100

Universität

3. Ergebnisse der Härtemessungen für den HDB-Stahl

Erkenntnisse

- Alle Abkühlstrategien weisen über dem Querschnitt geringfügige Abweichungen der Makrohärte auf \geq
- Max. Δ HV von 60 HV30 bei einer Druckluftabkühlung von 10 Min. und 3 bar \geq
- Eine Druckluftabkühlung von 2 Min. und 3 bar ist hinsichtlich der Härtewerte vergleichbar mit den \geq luftabgekühlten Proben

© Leibniz Universität Hannover, IFUM, Prof. Dr.-Ing. B.-A. Behrens

IFUIT

Leibniz Universität 2 Hannover

0

100

IFUM

3. UZTU-Diagramm für den HDB-Stahl (Luftabkühlung)

Erkenntnisse

- Mittels der Verwendung von UZTU-Diagrammen können erste Aussagen zum Gefüge gemacht werden
- Die luftabgekühlten Wellen weisen ein bainitisches Gefüge mit geringen Anteilen an Martensit und Ferrit/Perlit auf

l Leibniz
 *L*eibniz
 *L*eibn

0

100

 \mathbb{Z}

IFUM

3. UZTU-Diagramm für den HDB-Stahl (3 bar / 2 min)

Erkenntnisse

- Aufgrund der verwendeten Druckluft mit 3 bar f
 ür 2 Minuten verschiebt sich das resultierende Gef
 üge weiter nach Links im UZTU-Diagramm
- Der Anteil an Martensit wird im Vergleich zu der Luftabkühlung erhöht

l Leibniz2 Universität4 Hannover

0;

100

))///((\\

IFUIT

3. UZTU-Diagramm für den HDB-Stahl (3 bar / 10 min)

Erkenntnisse

- Aufgrund der verwendeten Druckluft mit 3 bar f
 ür 10 Minuten verschiebt sich das resultierende Gef
 üge noch weiter nach Links im UZTU-Diagramm im Vergleich zu den luftabgek
 ühlten und mit 2 Minuten sowie 3 bar druckluftabgek
 ühlten Wellen
- Der Anteil an Martensit wird deutlich erhöht im Vergleich zu den bisher dargestellten Wellen

100

Universität

5. UZTU-Diagramm für den HDB-Stahl – Rückschlüsse auf das Gefüge

Erkenntnisse

Aufgrund der lokal unterschiedlichen Umformgrade φ lassen sich anhand der umformgradabhängigen \succ UZTU-Diagramme lediglich sehr grobe Aussagen über das eingestellte Gefüge machen

Bei den Härtemessungen an der abgesetzten Welle variieren die lokalen Umformgrade \geq $\varphi_{lok} = 0.5 - 3.5$

© Leibniz Universität Hannover, IFUM, Prof. Dr.-Ing. B.-A. Behrens

IEUT

100

Universität

5. Ergebnisse der Härtemessungen für den AFP-Stahl

Erkenntnisse

- Der AFP-Stahl (ca. 300 HV30) weist gegenüber dem HDB-Stahl (ca. 400-500 HV30) deutlich geringere Härtewerte auf
- Alle Abkühlstrategien weisen über dem Querschnitt eine nahezu identische Makrohärte auf
- Max. \triangle HV von 50 HV30 bei einer Druckluftabkühlung von 10 Min. und 3 bar \succ
- Kaum Abweichungen bei der Variation der Kühlsprühzeit von 2 und 10 Min. \succ

© Leibniz Universität Hannover, IFUM, Prof. Dr.-Ing. B.-A. Behrens

IFUIT

100

Universität

5. Ergebnisse der Härtemessungen für den Einsatzstahl

Erkenntnisse

- Der Einsatzstahl (ca. 325 HV30) weist gegenüber dem HDB-Stahl (ca. 400-500 HV30) deutlich geringere Härtewerte auf, jedoch gegenüber dem AFP-Stahl (ca. 300 HV30) eine etwas höhere Härte auf
- Alle Abkühlstrategien weisen über dem Querschnitt sehr geringe Makrohärtedifferenzen auf \geq
- Max. \triangle HV von 45 HV30 bei einer Druckluftabkühlung von 10 Min. und 3 bar \succ

IFUN

Gliederung

1. Vorstellung IFUM

2. Einleitung

3. Experimentelle Untersuchungen

4. Numerische Untersuchungen

- Numerische Abbildung der Gefügeevolution in Abhängigkeit der Formänderung und \geq des Abkühlverhaltens in geschmiedeten Bauteilen
- Programmtechnische Implementierung folgender Modelle in simufact.forming

Johnson-Mehl-Avrami (JMA)-Gleichung zur Vorhersage der Gefügeanteile Ferrit, Perlit und Bainit $\zeta_{i} = \zeta_{eq,i} \begin{pmatrix} -k \left(\frac{t}{t_{0}}\right)^{n} \end{pmatrix} \begin{pmatrix} \zeta_{i} : \text{Gefügeanteil} \\ k, n : \text{Werkstoffparameter} \\ \zeta_{eq,i} : \text{Phasenanteil im Gleichgewicht} \\ \zeta_{i} : \text{Comparison} \end{pmatrix}$ diffusionsgesteuert Bainit [%] 5,6 4,5 3,4 2,3 1,2 t/t_0 : Normierte Zeit 0.0 Koistinen-Marburger (KM)-Gleichung zur Abbildung diffusionsloser Umwandlungsvorgänge (Martensitbildung) Martensit [%] $\zeta_{\rm M}$: Gefügeanteil (Martensit) diffusionslos $\zeta_{\rm M} = 1 - e^{\left(-\alpha(\vartheta_{\rm Ms} - \vartheta)^{\kappa}\right)}$ 99,4 98,5 α,κ : Werkstoffparameter 97,6 96.7 \mathcal{G}_{Ms} : Martensit-Starttemperatur 95,7 94,6

IFUT

- Berechnungen der Phasenübergänge basieren auf ZTU Daten (isotherm & kontinuierlich)
- ZTU-Datenbank in simufact.forming mit JMtaPro berechnet
- Möglichkeit der Einbindung experimentell ermittelter ZTU-Daten

- Zur Berücksichtigung der Umformhistorie und damit zur präziseren Vorhersage der Phasenumwandlung sollte Einbindung von UZTU Diagrammen erfolgen
- Notwendigkeit der Heranziehung von mehreren UZTU-Datensätzen, da Prozess umformgradabhängig ist
- Dies stellt noch eine Herausforderung dar, das zur Berechnung bisher nur ein Diagramm herangezogen werden kann

© Leibniz Universität Hannover, IFUM, Prof. Dr.-Ing. B.-A. Behrens

2 Leibniz 2 Universität 4 Hannover

0;

100

4. Gegenüberstellung experimenteller und simulierter Phasen - Wasserabkühlung

Erkenntnisse

- > Abgleich zeigt gute Übereinstimmung zwischen gemessenen und numerisch ermittelten Werten
- Abkühlung mit Wasser erfolgt zu schnell

© Leibniz Universität Hannover, IFUM, Prof. Dr.-Ing. B.-A. Behrens

IFUIT

4. Gegenüberstellung der experimentell und numerisch ermittelten Härte

Gute Übereinstimmung zwischen experimentell und numerisch ermitteltem Härteprofil \succ

© Leibniz Universität Hannover, IFUM, Prof. Dr.-Ing. B.-A. Behrens

Leibniz Universität Hannover Institut für Umformtechnik und Umformmaschinen

IFUM

Untersuchung zur kontrollierten Wärmebehandlung von Stahlschmiedebauteilen aus der Schmiedewärme

Prof. Dr.-Ing. B.-A. Behrens, Dipl.-Ing. M. Kazhai, Dipl.-Wirtsch.-Ing. A. Huskic

Garbsen, 17.03.2015

© Leibniz Universität Hannover, IFUM, Prof. Dr.-Ing. B.-A. Behrens